#include "prst/adc.h" #include #include #include #include #include #include #include "prst_config.h" // 10 bits resoltuion. #define PRST_ADC_RESOLUTION 10 #define PRST_ADC_BATT_INPUT NRF_SAADC_INPUT_VDD #define PRST_ADC_BATT_CHANNEL 0 #define PRST_ADC_SOIL_INPUT NRF_SAADC_INPUT_AIN1 #define PRST_ADC_SOIL_CHANNEL 1 #define PRST_ADC_PHOTO_INPUT NRF_SAADC_INPUT_AIN0 #define PRST_ADC_PHOTO_CHANNEL 2 static nrf_saadc_value_t sample_adc_channel(uint8_t channel) { nrf_saadc_value_t result; // *WARNING* this function is blocking, which is ot ideal but okay, but it // *does not work* when oversampling is set! I had to manually disable // SAADC_CONFIG_OVERSAMPLE in sdk_config.h. APP_ERROR_CHECK(nrf_drv_saadc_sample_convert(channel, &result)); return result; } // Caps the argument to the [0.0, 1.0] range. static inline double cap_percentage(double value) { return value > 1.0 ? 1.0 : (value < 0.0 ? 0.0 : value); } // Unused, since we'll call the SAADC synchronously for now. void saadc_callback(nrf_drv_saadc_evt_t const* p_event) { if (p_event->type == NRF_DRV_SAADC_EVT_DONE) { ret_code_t err_code; uint16_t size = p_event->data.done.size; err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, size); APP_ERROR_CHECK(err_code); int i; NRF_LOG_INFO("[adc] ADC event!"); for (i = 0; i < size; i++) { NRF_LOG_INFO("[adc] %d", p_event->data.done.p_buffer[i]); } } } void prst_adc_init() { nrf_saadc_channel_config_t batt_channel_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(PRST_ADC_BATT_INPUT); APP_ERROR_CHECK(nrf_drv_saadc_init(NULL, saadc_callback)); APP_ERROR_CHECK( nrf_drv_saadc_channel_init(PRST_ADC_BATT_CHANNEL, &batt_channel_config)); nrf_saadc_channel_config_t soil_channel_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(PRST_ADC_SOIL_INPUT); soil_channel_config.reference = NRF_SAADC_REFERENCE_VDD4; APP_ERROR_CHECK( nrf_drv_saadc_channel_init(PRST_ADC_SOIL_CHANNEL, &soil_channel_config)); nrf_saadc_channel_config_t photo_channel_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(PRST_ADC_PHOTO_INPUT); APP_ERROR_CHECK(nrf_drv_saadc_channel_init(PRST_ADC_PHOTO_CHANNEL, &photo_channel_config)); } prst_adc_batt_read_t prst_adc_batt_read() { nrf_saadc_value_t result = sample_adc_channel(PRST_ADC_BATT_CHANNEL); prst_adc_batt_read_t ret; ret.raw = (uint16_t)result; ret.voltage = (3.6 * result) / (1 << PRST_ADC_RESOLUTION); ret.millivolts = ret.voltage * 1000; #if PRST_ADC_BATT_DEBUG NRF_LOG_INFO( "[adc] Read battery voltage: %d (raw); %d mV; " NRF_LOG_FLOAT_MARKER " V", ret.raw, ret.millivolts, NRF_LOG_FLOAT(ret.voltage)); #endif return ret; } // If you got this far and really want to see how the sausage is made, // this function estimates the soil moisture percent based on the raw // ADC value as returned from the saadc. It assumes 10 bits resolution. // Ideally, we're taking the ADC sample relative to the VDD voltage, so // this input value should be stable across the range of input voltages. // In practice, when varying the input voltage, this value is drifting // enough to be annoying. To account for this drift, I collected ADC readings // while varying the input voltage from 2V to 3V (CR2032 voltage range) and // fitted two second degree polynomials over them - one for the sensor // out in the air (representing a dry soil) and one while holding the // sensor in my hand (representing a wet soil). // This raw data is available at the data/ dir at the root of this repository. static inline double get_soil_moisture_percent( double battery_voltage, nrf_saadc_value_t raw_adc_output) { const double x = battery_voltage; const double dry = -12.9 * x * x + 111 * x + 228; const double wet = -5.71 * x * x + 60.2 * x + 126; #if PRST_ADC_SOIL_DEBUG NRF_LOG_INFO("[adc] batt: " NRF_LOG_FLOAT_MARKER, NRF_LOG_FLOAT(x)); NRF_LOG_INFO("[adc] dry: " NRF_LOG_FLOAT_MARKER " wet: " NRF_LOG_FLOAT_MARKER, NRF_LOG_FLOAT(dry), NRF_LOG_FLOAT(wet)); #endif return (raw_adc_output - dry) / (wet - dry); } prst_adc_soil_moisture_t prst_adc_soil_read(double battery_voltage) { nrf_saadc_value_t raw_adc_output = sample_adc_channel(PRST_ADC_SOIL_CHANNEL); const double percentage = get_soil_moisture_percent(battery_voltage, raw_adc_output); prst_adc_soil_moisture_t ret; ret.raw = raw_adc_output; ret.percentage = percentage; ret.relative = cap_percentage(percentage) * UINT16_MAX; #if PRST_ADC_SOIL_DEBUG NRF_LOG_INFO("[adc] Read soil moisture: %d (raw); " NRF_LOG_FLOAT_MARKER " %% (percentage); %u (relative)", ret.raw, NRF_LOG_FLOAT(percentage * 100), ret.relative); #endif return ret; } prst_adc_photo_sensor_t prst_adc_photo_read(double battery_voltage) { nrf_saadc_value_t raw_photo_output = sample_adc_channel(PRST_ADC_PHOTO_CHANNEL); if (raw_photo_output < 0) { raw_photo_output = 0; } prst_adc_photo_sensor_t ret; ret.raw = raw_photo_output; ret.voltage = (3.6 * raw_photo_output) / (1 << PRST_ADC_RESOLUTION); // The photo resistor forms a voltage divider with a 10 kOhm resistor. // The voltage here is measured in the middle of the voltage divider. // Vcc ---- (R_photo) ---|--- (10k) ---- GND // Vout // So we can estimate R_photo = R * (Vcc - Vout) / Vout const float photo_resistance = 1e4f * (battery_voltage - ret.voltage) / ret.voltage; // The relationship between the LDR resistance and the lux level is // logarithmic. We need to solve a logarithmic equation to find the lux // level, given the LDR resistance we just measured. // These values work for the GL5528 LDR and were borrowed from // https://github.com/QuentinCG/Arduino-Light-Dependent-Resistor-Library. const float mult_value = 32017200.0f; const float pow_value = 1.5832f; ret.brightness = MAX(0, MIN(mult_value / powf(photo_resistance, pow_value), UINT16_MAX)); #if PRST_ADC_PHOTO_DEBUG NRF_LOG_INFO("[adc] Read brightness level: %d (raw); %d (lux)", ret.raw, ret.brightness); #endif return ret; }