diff --git a/latex/Kapitel/char_process.tex b/latex/Kapitel/char_process.tex index 4a6bfdf..f7be8eb 100644 --- a/latex/Kapitel/char_process.tex +++ b/latex/Kapitel/char_process.tex @@ -27,7 +27,7 @@ The induction coil is water-cooled and fixed via a face plate that allows differ & \quad \subfloat[Induction coil assembly\label{fig:test-rig-coil}]{\includegraphics[width=0.45\linewidth]{Abbildungen/test-rig-rogowski.png}} \end{tabular} - \caption{\acrshort{mcl} induction heating test rig (model HU-VH300-MS30, manufactured by Ideal Thermal Processes GmbH (ITP), Oberkirch, Germany).} + \caption[\acrshort{mcl} induction heating test rig.]{\acrshort{mcl} induction heating test rig (model HU-VH300-MS30, manufactured by Ideal Thermal Processes GmbH (ITP), Oberkirch, Germany).} \end{figure} @@ -66,7 +66,7 @@ Figure~\ref{fig:rogowski-data-rod} corroborated the power curve of the machine, \subfloat[Current flow\label{fig:current-rod}]{\includegraphics[width=6cm]{Abbildungen/IBA_current_comparison.png}} \qquad \subfloat[Single wave at $t=\qty{6}{\sec}$??\label{fig:waveshape-rod}]{\includegraphics[width=6cm]{Abbildungen/IBA_waveform.png}} - \caption{Process data of 50CrMo4 rod being heated in the \acrshort{mcl} test rig using a helical induction coil.}\label{fig:rogowski-data-rod} + \caption[Induction heating process data for 50CrMo4 rod.]{Process data for 50CrMo4 rod being heated in the \acrshort{mcl} test rig using a helical induction coil.}\label{fig:rogowski-data-rod} \end{figure} The current data used as simulation input was then reduced to a set of \num{300} interpolation points to increase calculation stability. @@ -90,11 +90,11 @@ The same methodology of a voltage measurement across inductor contacts and a Rog \subfloat[Power flow\label{fig:current-crank}]{\includegraphics[width=0.45\linewidth]{Abbildungen/elotherm-hl1.png}} \quad \subfloat[Normalized single wave at $t=\qty{1}{\sec}$\label{fig:waveshape-crank}]{\includegraphics[width=0.45\linewidth]{Abbildungen/Elotherm_sine.png}} - \caption{Process data of C38p crankshaft bearing being heated by a \ang{120} arc shaped inductor at the BMW production line. As per publication~\ref{apx:pub1}, the slight over regulation of the waveform can be ignored during simulation.}\label{fig:rogowski-data-crank} + \caption[Induction heating process data of C38p crankshaft.]{Process data of C38p crankshaft bearing being heated by a \ang{120} arc shaped inductor at the BMW production line. As per publication~\ref{apx:pub1}, the slight over regulation of the waveform can be ignored during simulation.}\label{fig:rogowski-data-crank} \end{figure} For the simulation, the electrical current data was again simplified. -the fluctuating current was set to switch between two set levels of \qtyrange{00}{00}{A} with a timing of \qty{00}{\s} high and \qty{00}{\s} low. +the fluctuating current was set to switch between two set levels of \qtyrange{00}{00}{A}?? with a timing of \qty{00}{\s}?? high and \qty{00}{\s}?? low. \section{Signal Quality} diff --git a/latex/Kapitel/simulation.tex b/latex/Kapitel/simulation.tex index 806c2c2..844bc40 100644 --- a/latex/Kapitel/simulation.tex +++ b/latex/Kapitel/simulation.tex @@ -19,8 +19,7 @@ The geometry was then cut at the first and second main bearings so reduce the si \begin{figure}[htbp] \centering \includegraphics[width=\linewidth]{Abbildungen/crankshaft_b6.png} - \caption{sideview of full geometry with the modeled region highlighted in red.} - \label{fig:xcad-crankshaft-1} + \caption{Sideview of full geometry with the modeled region highlighted in red.}\label{fig:xcad-crankshaft-1} \end{figure} @@ -30,8 +29,7 @@ A \acrshort{cad} model of the inductor was created from a technical drawing and \begin{figure}[htbp] \centering \includegraphics[width=0.5\linewidth]{example-image} - \caption{CAD model of the inductor.} - \label{fig:cad-inductor} + \caption{CAD model of the inductor.}\label{fig:cad-inductor} \end{figure} The mesh was generated by our partners at the \acrshort{ecs}, with the following key properties: @@ -43,8 +41,7 @@ Figure~\ref{fig:crank-sim-inductor-net} shows the bulk of these portions in a cu \begin{figure}[htbp] \centering \includegraphics[width=0.85\linewidth]{Abbildungen/Draufsicht_overlay.png} - \caption{Front view of rotating inductor and surface sections, highlighted in red.} - \label{fig:crank-sim-inductor-net} + \caption[Front view of rotating inductor and surface sections.]{Front view of rotating inductor and surface sections, highlighted in red.}\label{fig:crank-sim-inductor-net} \end{figure} \subsection{Rotational movement} @@ -58,8 +55,7 @@ A simple rotational algorithm was implemented that would move move a defined gro \subfloat[Initial state]{\includegraphics[width=0.45\linewidth]{Abbildungen/rotation_scheme1.png}}\\ \subfloat[Interface layer of elements is skewed by movement. The nodes move by one position.]{\includegraphics[width=0.45\linewidth]{Abbildungen/rotation_scheme2.png}}\\ \subfloat[Initial state is recreated by reknitting the elements with the now present nodes.]{\includegraphics[width=0.45\linewidth]{Abbildungen/rotation_scheme3.png}}\\ - \caption{Scheme of partial remeshing for relative movement between two groups of nodes.} - \label{fig:rotation-scheme} + \caption[Scheme of partial remeshing for relative movement.]{Scheme of partial remeshing for relative movement between two groups of nodes.}\label{fig:rotation-scheme} \end{figure} \begin{figure}[htbp] @@ -70,8 +66,7 @@ A simple rotational algorithm was implemented that would move move a defined gro \subfloat[Actual geometry]{\includegraphics[width=0.45\linewidth]{Abbildungen/rotator_ohneluft.png}} & \subfloat[Cutaway to show rotating surface region.]{\includegraphics[width=0.45\linewidth]{Abbildungen/rotator_ohneluft_cut.png}} \end{tabular} - \caption{Division of the model into stationary and rotating sections, the latter highlighted in red.} - \label{fig:crank-sim-model} + \caption[Division of the model into stationary and rotating sections.]{Division of the model into stationary and rotating sections, the latter highlighted in red.}\label{fig:crank-sim-model} \end{figure} Figure~\ref{fig:rotation-scheme} shows the steps for a translational example. @@ -211,15 +206,13 @@ A {\ttfamily*VISCO} calculation then takes that thermal result as a volumetric t \begin{figure}[htbp] \centering \includegraphics[width=7cm]{Abbildungen/approx_temp_curve.png} - \caption{Simplified temperature curve applied to the whole area marked in figure~\ref{fig:kw-thermal-heating}} - \label{fig:thermal-approx-curve} + \caption[Simplified temperature curve.]{Simplified temperature curve applied to the whole area marked in figure~\ref{fig:kw-thermal-heating}}\label{fig:thermal-approx-curve} \end{figure} \begin{figure}[htbp] \centering \includegraphics[height=7cm]{Abbildungen/KW_therm_heating.png} - \caption{Heated surface mesh of the crankshaft as interpreted from the cross sections in figure~\ref{fig:hardness-samples} and appendix~\ref{apx:pub2}.} - \label{fig:kw-thermal-heating} + \caption[Heated surface mesh of the crankshaft.]{Heated surface mesh of the crankshaft as interpreted from the cross sections in figure~\ref{fig:hardness-samples} and appendix~\ref{apx:pub2}.}\label{fig:kw-thermal-heating} \end{figure} @@ -231,43 +224,38 @@ The results obtained by the thermal approximation were \begin{figure}[p] \centering \begin{tabular}{cc} - \subfloat[Radial Stresses after Heating]{\includegraphics[width = 0.45\linewidth]{Abbildungen/kw-th-heating-S-Rad.png}} & - \subfloat[Radial Stresses after Cooling]{\includegraphics[width = 0.45\linewidth]{Abbildungen/kw-th-aircool-S-Rad.png}} \\ - \subfloat[Tangential Stresses after Heating]{\includegraphics[width = 0.45\linewidth]{Abbildungen/kw-th-heating-S-Tan.png}} & - \subfloat[Tangential Stresses after Cooling]{\includegraphics[width = 0.45\linewidth]{Abbildungen/kw-th-aircool-S-Tan.png}} \\ - \subfloat[Axial Stresses after Heating]{\includegraphics[width = 0.45\linewidth]{Abbildungen/kw-th-heating-S-Axi.png}} & - \subfloat[Axial Stresses after Cooling]{\includegraphics[width = 0.45\linewidth]{Abbildungen/kw-th-aircool-S-Axi.png}} + \subfloat[Radial Stresses after heating]{\includegraphics[width = 0.45\linewidth]{Abbildungen/kw-th-heating-S-Rad.png}} & + \subfloat[Radial Stresses after quenching]{\includegraphics[width = 0.45\linewidth]{Abbildungen/kw-th-aircool-S-Rad.png}} \\ + \subfloat[Tangential Stresses after heating]{\includegraphics[width = 0.45\linewidth]{Abbildungen/kw-th-heating-S-Tan.png}} & + \subfloat[Tangential Stresses after quenching]{\includegraphics[width = 0.45\linewidth]{Abbildungen/kw-th-aircool-S-Tan.png}} \\ + \subfloat[Axial Stresses after heating]{\includegraphics[width = 0.45\linewidth]{Abbildungen/kw-th-heating-S-Axi.png}} & + \subfloat[Axial Stresses after quenching]{\includegraphics[width = 0.45\linewidth]{Abbildungen/kw-th-aircool-S-Axi.png}} \end{tabular} - \caption{Caption} - \label{fig:enter-label} + \caption[Stress component distribuiton of crankshaft.]{Sectional views of stress component distributions before and after quenching. It must be noted that the image scales of \textbf{(a)}, \textbf{(c)},and \textbf{(e)} are equalized but reduced by a factor 3 to those of \textbf{(b)}, \textbf{(d)}, and \textbf{(f)}.}\label{fig:enter-label} \end{figure} \begin{figure}[htbp] \centering \includegraphics[width=\linewidth]{Abbildungen/kw_th_time_data_heat_axi.png} - \caption{Evolution of axial strain components and stresses during heating.} - \label{fig:time_data} + \caption{Evolution of axial strain components and stresses during heating.}\label{fig:time_data} \end{figure} \begin{figure}[htbp] \centering \includegraphics[width=\linewidth]{Abbildungen/kw_th_time_data_heat_tan.png} - \caption{Evolution of tangential strain components and stresses during heating.} - \label{fig:enter-label} + \caption{Evolution of tangential strain components and stresses during heating.}\label{fig:enter-label} \end{figure} \begin{figure}[htbp] \centering \includegraphics[width=\linewidth]{Abbildungen/kw_th_time_data_quench_axi.png} - \caption{Evolution of axial strain components and stresses during quenching.} - \label{fig:time_data} + \caption{Evolution of axial strain components and stresses during quenching.}\label{fig:time_data} \end{figure} \begin{figure}[htbp] \centering \includegraphics[width=\linewidth]{Abbildungen/kw_th_time_data_quench_tan.png} - \caption{Evolution of tangential strain components and stresses during quenching.} - \label{fig:enter-label} + \caption{Evolution of tangential strain components and stresses during quenching.}\label{fig:enter-label} \end{figure} @@ -281,8 +269,7 @@ The results obtained by the thermal approximation were \subfloat[full Mechanical Mesh]{\includegraphics[width=0.4\linewidth]{Abbildungen/KW_mech_full.png}} \quad\quad \subfloat[Free-cut Sample plate Mesh]{\includegraphics[width=0.4\linewidth]{Abbildungen/KW_mech_cut.png}} - \caption{Meshes of the two steps during the free-cutting simulation.} - \label{fig:hexrd-smple-cut-sim} + \caption{Meshes of the two steps during the free-cutting simulation.}\label{fig:hexrd-smple-cut-sim} \end{figure} @@ -290,24 +277,21 @@ The results obtained by the thermal approximation were \begin{figure}[thbp] \centering \includegraphics[width=0.75\linewidth]{Abbildungen/kw-th-cut-S-Rad_vgl.png} - \caption{Comparison of radial stresses before \textbf{(left)} and after \textbf{(right)} cutting the sample plate.} - \label{fig:enter-label} + \caption[Comparison of radial stresses before and after cutting plates.]{Comparison of radial stresses before \textbf{(left)} and after \textbf{(right)} cutting the sample plate.}\label{fig:enter-label} \end{figure} \begin{figure}[thbp] \centering \includegraphics[width=0.75\linewidth]{Abbildungen/kw-th-cut-S-Tan_vgl.png} - \caption{Comparison of tangential stresses before \textbf{(left)} and after \textbf{(right)} cutting the sample plate.} - \label{fig:enter-label} + \caption[Comparison of tangential stresses before and after cutting plates.]{Comparison of tangential stresses before \textbf{(left)} and after \textbf{(right)} cutting the sample plate.}\label{fig:enter-label} \end{figure} \begin{figure}[thbp] \centering \includegraphics[width=0.75\linewidth]{Abbildungen/kw-th-cut-S-Axi_vgl.png} - \caption{Comparison of axial stresses before \textbf{(left)} and after \textbf{(right)} cutting the sample plate.} - \label{fig:enter-label} + \caption[Comparison of axial stresses before and after cutting plates.]{Comparison of axial stresses before \textbf{(left)} and after \textbf{(right)} cutting the sample plate.}\label{fig:enter-label} \end{figure} \begin{figure}[thbp] @@ -320,34 +304,29 @@ The results obtained by the thermal approximation were \subfloat[Disk 1 - Axial]{\includegraphics[width=0.49\linewidth]{Abbildungen/kw-th-disk1-S-Axi-vgl.png}} & \subfloat[Disk 2 - Axial]{\includegraphics[width=0.49\linewidth]{Abbildungen/kw-th-disk2-S-Axi-vgl.png}} \\ \end{tabular} - \caption{Comparison of stresses before \textbf{(left)} and after \textbf{(right)} cutting sample disks.} - \label{fig:enter-label} + \caption[Comparison of stresses before and after cutting disks.]{Comparison of stresses before \textbf{(left)} and after \textbf{(right)} cutting sample disks.}\label{fig:enter-label} \end{figure} \begin{figure} \centering \includegraphics[width=0.6\linewidth]{Abbildungen/kw_th_vgl_rad.png} - \caption{Comparison of radial stresses measured by HEXRD \textbf{(left)} and calculated by \textit{Abaqus} \textbf{(right)}. } - \label{fig:enter-label} + \caption[Comparison of radial stresses between HEXRD and simulation.]{Comparison of radial stresses measured by HEXRD \textbf{(left)} and calculated by \textit{Abaqus} \textbf{(right)}. }\label{fig:enter-label} \end{figure} \begin{figure} \centering \includegraphics[width=0.6\linewidth]{Abbildungen/kw_th_vgl_axi.png} - \caption{Comparison of axial stresses measured by HEXRD \textbf{(left)} and calculated by \textit{Abaqus} \textbf{(right)}. } - \label{fig:enter-label} + \caption[Comparison of axial stresses between HEXRD and simulation.]{Comparison of axial stresses measured by HEXRD \textbf{(left)} and calculated by \textit{Abaqus} \textbf{(right)}. }\label{fig:enter-label} \end{figure} \begin{figure} \centering \includegraphics[width=0.6\linewidth]{Abbildungen/kw_th_vgl_tau.png} - \caption{Comparison of shear stresses measured by HEXRD \textbf{(left)} and calculated by \textit{Abaqus} \textbf{(right)}. } - \label{fig:enter-label} + \caption[Comparison of shear stresses between HEXRD and simulation.]{Comparison of shear stresses measured by HEXRD \textbf{(left)} and calculated by \textit{Abaqus} \textbf{(right)}. }\label{fig:enter-label} \end{figure} \begin{figure} \centering \includegraphics[width=0.6\linewidth]{Abbildungen/kw_th_vgl_delta-s.png} - \caption{Comparison of the differential stress $\sigma_{axi} - \sigma_{rad}$ along line \textbf{V} as measured by HEXRD \textbf{(red)} and calculated by \textit{Abaqus} \textbf{(blue)}. } - \label{fig:enter-label} -\end{figure} \ No newline at end of file + \caption[Comparison of differential stresses between HEXRD and simulation.]{Comparison of the differential stress $\sigma_{axi} - \sigma_{rad}$ along line \textbf{V} as measured by HEXRD \textbf{(red)} and calculated by \textit{Abaqus} \textbf{(blue)}. }\label{fig:enter-label} +\end{figure} diff --git a/latex/Kapitel/validation_data.tex b/latex/Kapitel/validation_data.tex index 4be7ebe..d839f50 100644 --- a/latex/Kapitel/validation_data.tex +++ b/latex/Kapitel/validation_data.tex @@ -41,7 +41,7 @@ Further the steep hardness gradient at the edges indicates a similarly steep tem \begin{figure}[htbp] \centering \includegraphics[height=4cm]{Abbildungen/NOG_hardness_wide.png} - \caption{Hardness distribution across rod. The figue has been oriented to align with the orientation of figure~\ref{fig:hardness-samples-embedded-rod}.}\label{fig:hardness-results-rod} + \caption[Hardness distribution across rod.]{Hardness distribution across rod. The figue has been oriented to align with the orientation of figure~\ref{fig:hardness-samples-embedded-rod}.}\label{fig:hardness-results-rod} \end{figure} The since the crankshaft's hardening profile was more complex and varied around the circumference, a single bisection would not yield all data of interest. @@ -52,7 +52,7 @@ Figure~\ref{fig:hardness_depth} shows the case hardening depth at the bearing ce This interaction can easily be explained by thebearing web's effect on the heated zone: The webs guide the magnetic flux and thus the heat generation up somewhat leaving a radius for the notches to show ``true'' hardening depth while the diagonal measurements cut through a rather strainght segment at the \ang{180} position. -Figures to how the etched micrographs of the \ang{0} and \ang{180} positions to show the hardened zones ? reference to publication~\ref{apx:pub2}?? +Figures to how the etched micrographs of the \ang{0} and \ang{180} positions to show the hardened zones ?? reference to publication~\ref{apx:pub2}?? \begin{figure} @@ -61,13 +61,13 @@ Figures to how the etched micrographs of the \ang{0} and \ang{180} positions to % \subfloat[]{\includegraphics[]{Abbildungen/hardness_P1_LF.png}} % \end{tabular} \includegraphics[width=9cm]{Abbildungen/hardness_P1_LF.png} - \caption{Hardness measurements at bearing surface center of hardened crankshaft. The hardening threshold of \qty{400}{HV1} is shown as a dashed line, with all lines showing a clear drop to an unhardened level of \qty{\sim300}{HV1}. }\label{fig:hardness_lf} + \caption[Hardness measurements around crankshaft bearing surface.]{Hardness measurements at bearing surface center of hardened crankshaft. The hardening threshold of \qty{400}{HV1} is shown as a dashed line, with all lines showing a clear drop to an unhardened level of \qty{\sim300}{HV1}. }\label{fig:hardness_lf} \end{figure} \begin{figure} \centering \includegraphics[width=9cm]{Abbildungen/hardness_HD_P1.png} - \caption{Hardened depth of three points of interest on hardened Crankshaft. The red line shows the measurements from the flange facing notch, the greeen line those of the pin facing notch, and the blue line the bearing center measurements.}\label{fig:hardness_depth} + \caption[Hardened depth of three points of interest on hardened Crankshaft.]{Hardened depth of three points of interest on hardened Crankshaft. The red line shows the measurements from the flange facing notch, the greeen line those of the pin facing notch, and the blue line the bearing center measurements.}\label{fig:hardness_depth} \end{figure} \section{Temperature and Phase Distributions} @@ -101,25 +101,25 @@ The trade-off was accepting a relaxation of tangential residual stresses, that w \subfloat{\includegraphics[width=0.5\linewidth]{Abbildungen/KW_sample_cut-1.png}} \\ \subfloat{\includegraphics[width=0.5\linewidth]{Abbildungen/KW_sample_cut-2.png}} \\ \subfloat{\includegraphics[width=0.5\linewidth]{Abbildungen/KW_sample_cut-3.png}} \\ - \caption{Steps of sample extraction for the synchrotron experiments. Cuts going from \textbf{(b)} to \textbf{(c)} were done by electrical discharge machining to a thickness of \qty{3}{\mm} and then carefully ground to eliminiate surface stresses from the \acrshort{edm} process, resulting in a final thickness of \qty{2.43}{\mm}.}\label{fig:hexrd-sample-prep} + \caption[Steps of sample extraction for the HEXRD.]{Steps of sample extraction for the synchrotron experiments. Cuts going from \textbf{(b)} to \textbf{(c)} were done by electrical discharge machining to a thickness of \qty{3}{\mm} and then carefully ground to eliminiate surface stresses from the \acrshort{edm} process, resulting in a final thickness of \qty{2.43}{\mm}.}\label{fig:hexrd-sample-prep} \end{figure} \begin{figure}[htbp] \centering \includegraphics[width=0.75\linewidth]{Abbildungen/KW_samples.png} - \caption{Side by side of the three sample plates cut from crank shafts at differetn processing stages: \textbf{2}---hardened, \textbf{4}---annealed, \textbf{6}---ground. The geometric difference of plate \textbf{6} to the others is evidence of a misalignment during sample cutting.}\label{fig:hexrd-samples-photo} + \caption[Side by side of HEXRD sample plates.]{Side by side of the three sample plates cut from crank shafts at different processing stages: \textbf{2}---hardened, \textbf{4}---annealed, \textbf{6}---ground. The geometric difference of plate \textbf{6} to the others is evidence of a misalignment during sample cutting.}\label{fig:hexrd-samples-photo} \end{figure} \begin{figure}[htbp] \centering \includegraphics[width=0.5\linewidth]{Abbildungen/KW_sample_actual.png} - \caption{Actual sample positions in crankshaft. The dashed black line indicates the intended position, the solid double line shows the path of the oil channel used for alignment.}\label{fig:hexrd-sample-pos} + \caption[Actual sample positions in crankshaft.]{Actual sample positions in crankshaft. The dashed black line indicates the intended position, the solid double line shows the path of the oil channel used for alignment.}\label{fig:hexrd-sample-pos} \end{figure} \begin{table}[htbp] \centering - \caption{Deviation of actual sample positions for plate samples}\label{tab:hexrd-sample-pos} + \caption{Deviation of actual sample positions for plate samples.}\label{tab:hexrd-sample-pos} \begin{tabular}{ccrrr}\toprule Sample ID & processing state & \makecell{Rotation along \\ bearing axis} & \makecell{Distance from \\ bearing axis} & {Thickness} \\ \midrule 2 & hardened & \qty{8.706}{\degree} & \qty{-0.657}{\mm} & \qty{2.43}{\mm} \\ @@ -132,7 +132,7 @@ The trade-off was accepting a relaxation of tangential residual stresses, that w \begin{figure}[htbp] \centering \includegraphics[width=0.5\linewidth]{Abbildungen/KW_hexrd_paths.png} - \caption{Measurement paths and paths of \acrshort{hexrd} Measurements. 3 areas were defined so as to cover to \qty{10.5}{\mm} depth.}\label{fig:hexrd-paths} + \caption[Measurement paths and paths of \acrshort{hexrd} Measurements.]{Measurement paths and paths of \acrshort{hexrd} Measurements. 3 areas were defined so as to cover to \qty{10.5}{\mm} depth.}\label{fig:hexrd-paths} \end{figure} @@ -141,8 +141,8 @@ The trade-off was accepting a relaxation of tangential residual stresses, that w \begin{tabular}{cc} \subfloat[Location in bearing]{\includegraphics[width=0.45\linewidth]{Abbildungen/kw_sample_discs_1.png}} & \subfloat[Lineup of both discs showing differentiating features]{\includegraphics[width=0.45\linewidth]{Abbildungen/kw_sample_discs_2.png}}\\ - \subfloat[Disk 1 - bearing edge]{\includegraphics[width=0.45\linewidth]{Abbildungen/kw_sample_discs_3.png}} & - \subfloat[Disk 2 - bearing center]{\includegraphics[width=0.45\linewidth]{Abbildungen/kw_sample_discs_4.png}} + \subfloat[Disk 1: bearing edge]{\includegraphics[width=0.45\linewidth]{Abbildungen/kw_sample_discs_3.png}} & + \subfloat[Disk 2: bearing center]{\includegraphics[width=0.45\linewidth]{Abbildungen/kw_sample_discs_4.png}} \end{tabular} \caption{Summary of sample extraction of disks.}\label{fig:hexrd-disk-pos} \end{figure} @@ -158,7 +158,7 @@ The trade-off was accepting a relaxation of tangential residual stresses, that w \begin{table}[htbp] \centering - \caption{HEXRD parameters of the subpaths making up each masurement line}\label{tab:hexrd-disk-subpaths} + \caption{HEXRD parameters of the subpaths making up each masurement line.}\label{tab:hexrd-disk-subpaths} \begin{tabular}{cccc}\toprule Depth & Step & Aperture & Exposure \\\midrule \qtyrange[range-units = single]{-0.10}{1.00}{\mm}&\qty{0.05}{\mm}&\qtyproduct[product-units=power]{0.05 x 0.05}{\mm} & \qty{8}{\s} \\ @@ -175,5 +175,5 @@ The trade-off was accepting a relaxation of tangential residual stresses, that w \begin{figure}[htbp] \centering \includegraphics[width=0.45\linewidth]{Abbildungen/DiskStress_Cart_hardening.png} - \caption{Comparison of hardening and stress transition depth for disks 1 and 2. For disk 1, the comparison is imperfect due to the hardness measurement path being at an angle in the web radius where the disk could only be cut straight down. It does however show the effect of the missing web on the hardened geometry reaching a maximum at \ang{180}.}\label{fig:hardnesses-disc} + \caption[Comparison of hardening and stress transition depth for disks.]{Comparison of hardening and stress transition depth for disks 1 and 2. For disk 1, the comparison is imperfect due to the hardness measurement path being at an angle in the web radius where the disk could only be cut straight down. It does however show the effect of the missing web on the hardened geometry reaching a maximum at \ang{180}.}\label{fig:hardnesses-disc} \end{figure} diff --git a/latex/todo.md b/latex/todo.md new file mode 100644 index 0000000..eacb0f6 --- /dev/null +++ b/latex/todo.md @@ -0,0 +1,24 @@ +# ToDos Dissertation +- [] Introduction +- [] State of the Art + +- [] Material Properties + - [] Mechanical + - [] Phase Transformations + - [] Electromagnetic + +- [] Validation Data + - [] Temperature & Phase distro + - [] SamplePrep + - [] Results + - [] Residual Aust + - [] SamplePrep + - [] Results + +- [] Crankshaft + - [] Validation + - [] Results Description + +- [] Results + - [] Discussion + - [] Conclusion