import numpy as np from numpy.polynomial.polynomial import Polynomial import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button # The parametrized function to be plotted def mantle(rfrac, n=1000): theta = np.linspace(-np.pi, np.pi, n) rmaj = 1 rmin = rmaj*rfrac u = theta * rmin func = (np.pi)*(rmaj - rmin*np.cos(theta)) data = np.array([func, u]) data2 = np.array([-func, u[::-1]]) data = np.append(data, data2, axis=1) data = np.append(data, data[:, 0:1], axis=1) return data def crossection(rfrac, n=1000): theta = np.linspace(0, 2*np.pi, n) rmaj = 1 rmin = rmaj * rfrac x = rmaj + rmin*np.cos(theta) y = rmin*np.sin(theta) data = np.array([x, y]) data2 = np.array([-x, y]) data = np.append(data, [[np.nan,], [np.nan,]], axis=1) data = np.append(data, data2, axis=1) return data def sunpath_side(rfrac, n=1000): theta = np.linspace(0, 2*np.pi, n) rmaj = 1 x = rmaj + rmaj*np.cos(theta) y = rmaj*np.sin(theta) return np.array([x, y]) def sunpath_top(rfrac, n=1000): theta = np.linspace(0, np.pi, n) rmaj = 1 x = rmaj + rmaj*np.cos(theta) y = np.zeros_like(theta) return np.array([x, y]) def sun_side(rfrac, sunpos): rmaj = 1 x = rmaj - rmaj*np.cos(sunpos) y = rmaj*np.sin(sunpos) return [x, y] def sun_top(rfrac, sunpos): rmaj = 1 x = rmaj - rmaj*np.cos(sunpos) y = 0 return [x, y] def sun_map(rfrac, sunpos): rmaj = 1 rmin = rmaj*rfrac y = sunpos * rmin x = 0 return [x, y] def topview(rfrac, n=1000): theta = np.linspace(0, np.pi, n) rmaj = 1 rmin = rmaj*rfrac x1 = (rmaj + rmin) * np.cos(theta) y1 = -1 * (rmaj + rmin) * np.sin(theta) data1 = np.array([x1, y1]) x2 = (rmaj - rmin) * np.cos(theta) y2 = -1 * (rmaj - rmin) * np.sin(theta) data2 = np.array([x2, y2]) data = np.append(data1, [[np.nan,], [np.nan,]], axis=1) data = np.append(data, data2, axis=1) return data def contour_map(rfrac, sunpos, n=100): rmaj = 1 rmin = rmaj*rfrac phi = np.linspace(-np.pi, np.pi, n) theta = np.linspace(-np.pi, np.pi, int(n*rfrac)) y = np.array([[w]*n for w in rmin*theta]) func = (np.pi)*(rmaj - rmin*np.cos(theta)) x = np.array([np.linspace(-f, f, n) for f in func]) # x, y = np.meshgrid(np.linspace(-func[0], func[0], n), rmin*theta) sun = [rmaj - rmaj*np.cos(sunpos), 0, rmaj*np.sin(sunpos)] def raytraced(ph, th): def r(ph, th): rx = (rmaj - rmin*np.cos(th)) * np.cos(ph) ry = (rmaj - rmin*np.cos(th)) * np.sin(ph) rz = rmin * np.sin(th) return rx, ry, rz def n(ph, th): rx, ry, rz = r(ph, th) cx = rmaj * np.cos(ph) cy = rmaj * np.sin(ph) cz = 0 retx, rety, retz = rx-cx, ry-cy, rz-cz return -1*np.array([retx, rety, retz])/np.linalg.norm([retx, rety, retz]) def b(ph, th): rx, ry, rz = r(ph, th) sx, sy, sz = sun retx, rety, retz = rx-sx, ry-sy, rz-sz return np.array([retx, rety, retz])/np.linalg.norm([retx, rety, retz]) o = sun d = b(ph, th) s = r(ph, th) pol = Polynomial(coef(rmaj, rmin, d, o)) roots = uproot(pol.roots()) if len(roots) == 0: return 0 poi = o + roots[0]*d return (1 if np.allclose(s, poi) else -1) z = np.array([[raytraced(ph, th) for ph in phi] for th in theta]) # z = np.array([[np.dot(b(ph, th), n(ph, th)) for ph in phi] for th in theta]) return x, y, z def coef(rmaj, rmin, d, o): k1 = np.inner(d, d) k2 = np.inner(o, d) k3 = np.inner(o, o) - (rmin**2 + rmaj**2) c4 = k1**2 c3 = 4*k1*k2 c2 = 2*k1*k3 + 4*k2**2 + 4*(rmaj*d[2])**2 c1 = 4*k3*k2 + 8*(rmaj**2)*o[2]*d[2] c0 = k3**2 - 4*(rmaj**2)*(rmin**2 - o[2]**2) return [c0, c1, c2, c3, c4] def uproot(arr): mask = np.logical_and(arr > 0, np.isreal(arr)) masked = arr[mask] return np.real(sorted(masked)) r_fraction = 0.5 sun_pos = np.pi/2 # Create the figure and the line that we will manipulate fig, (ax_side, ax_top, ax_map) = plt.subplots(3, 1, gridspec_kw={'height_ratios': [1, 1, 1]}) circles_top, = ax_top.plot(*topview(r_fraction), 'k') path_top, = ax_top.plot(*sunpath_top(r_fraction), 'k:') pos_top, = ax_top.plot(*sun_top(r_fraction, sun_pos), marker='o', color='r', markersize=10,) ax_top.set_xlim(-2.05, 2.05) ax_top.set_ylim(-2.05, None) ax_top.set_aspect('equal') ax_top.axis('off') circles_side, = ax_side.plot(*crossection(r_fraction), 'k') path_side, = ax_side.plot(*sunpath_side(r_fraction), 'k:') pos_side, = ax_side.plot(*sun_side(r_fraction, sun_pos), marker='o', color='r', markersize=10,) ax_side.set_xlim(-2.05, 2.05) ax_side.set_aspect('equal') # ax_side.set_ylim(-r_min, None) ax_side.axis('off') map_border, = ax_map.plot(*mantle(r_fraction), 'k') pos_map, = ax_map.plot(*sun_map(r_fraction, sun_pos), marker='o', color='r', markersize=10,) dawnline_map = [ax_map.contourf(*contour_map(r_fraction, sun_pos), [-1, 0, 1], cmap='YlOrBr_r')] ax_map.set_aspect('equal') ax_map.set_ylabel('Longitude') ax_map.set_xlabel('Lattitude') ax_map.axis('off') # cbar = fig.colorbar(dawnline_map[0]) # adjust the main plot to make room for the sliders fig.subplots_adjust(left=0.25, bottom=0.25) # Make a horizontal slider to control the frequency. axsun = fig.add_axes([0.25, 0.1, 0.65, 0.03]) slider_sun = Slider( ax=axsun, label='Angle of Sun', valmin=-np.pi, valmax=np.pi, valinit=sun_pos, ) # Make a vertically oriented slider to control the amplitude axrad = fig.add_axes([0.1, 0.25, 0.0225, 0.63]) slider_rf = Slider( ax=axrad, label="Fraction of Radii (r/R)", valmin=0, valmax=1, valinit=r_fraction, orientation="vertical" ) # The function to be called anytime a slider's value changes def update_torus(val): def update(ax, line, func): u, m = func(slider_rf.val) line.set_ydata(m) line.set_xdata(u) ax.relim() ax.autoscale_view() update(ax_map, map_border, mantle) update(ax_side, circles_side, crossection) update(ax_side, path_side, sunpath_side) update(ax_top, circles_top, topview) update(ax_top, path_top, sunpath_top) for coll in dawnline_map[0].collections: coll.remove() dawnline_map[0] = ax_map.contourf(*contour_map(slider_rf.val, slider_sun.val), [-1, 0, 1], cmap='YlOrBr_r') fig.canvas.draw_idle() # The function to be called anytime a slider's value changes def update_sun(val): def update(ax, line, func): u, m = func(slider_rf.val, slider_sun.val) line.set_ydata(m) line.set_xdata(u) update(ax_map, pos_map, sun_map) update(ax_side, pos_side, sun_side) update(ax_top, pos_top, sun_top) for coll in dawnline_map[0].collections: coll.remove() dawnline_map[0] = ax_map.contourf(*contour_map(slider_rf.val, slider_sun.val), [-1, 0, 1], cmap='YlOrBr_r') fig.canvas.draw_idle() # register the update function with each slider slider_sun.on_changed(update_sun) slider_rf.on_changed(update_torus) # Create a `matplotlib.widgets.Button` to reset the sliders to initial values. resetax = fig.add_axes([0.8, 0.025, 0.1, 0.04]) button = Button(resetax, 'Reset', hovercolor='0.975') def reset(event): slider_sun.reset() slider_rf.reset() button.on_clicked(reset) plt.show()